手工课时,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
当x是多少时,菱形风筝面积S最大?最大面积是多少?______.
(参考公式:当x=-时,二次函数y=ax2+bx+c(a≠0)有最小(大)值
)
某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打6折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打8折,导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC= ;
(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
解方程:
(1)3x﹣4(2x+5)=x+4;
(2).
计算:
(1)(﹣2)2×7﹣62÷(﹣3)×
(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3ab2+2,其中a=﹣2,b=2.
(1)计算:(﹣4a2b4c)÷(a2b3)•2ab2
(2)计算:
(3)先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.