某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).
(1)求y与x之间的函数关系式,自变量x的取值范围;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)
解方程:
如图,梯形中,
在
轴上,
∥
,∠
=
°,
为坐标原点,
,
,动点
从点
出发,以每秒1个单位的速度沿线段
运动,到点
停止,过点
作
⊥
轴交
或
于点
,以
为一边向右作正方形
,设运动时间为
(秒),正方形
与梯形
重叠面积为
(平方单位).
(1)求tan∠AOC.
(2)求与t的函数关系式.
(3)求(2)中的的最大值.
(4)连接,
的中点为
,请直接写出在正方形
变化过程中,t为何值时,△
为等腰三角形.
如图,在平面直角坐标系中,四边形的顶点O为坐标原点,点C在x轴的正半轴上,且
于点
,点
的坐标为(2,2
),
=
,
60°,点
是线段
上一点,且
,连接
.
(1)求证:△AOD是等边三角形;
(2)求点的坐标;
(3)平行于的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形
截得的线段长为
,直线l与x轴交点的横坐标为t.
① 当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围).
② 若,请直接写出此时
的值.
探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,
结论:(1)∠AEB的度数为;
(2)线段AD、BE之间的数量关系是.
应用:如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式;
(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.
(3)在渔政船驶往黄岩岛的过程中,直接写出渔船从港口出发经过多长时间与渔政船相距30海里?