如图,在直角坐标系中,是原点,
三点的坐标分别
,四边形
是梯形,点
同时从原点出发,分别作匀速运动,其中点
沿
向终点
运动,速度为每秒
个单位,点
沿
向终点
运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求直线的解析式.
(2)设从出发起,运动了秒.如果点
的速度为每秒
个单位,试写出点
的坐标,并写出此时
的取值范围.
(3)设从出发起,运动了秒.当
,
两点运动的路程之和恰好等于梯形
的周长的一半,这时,直线
能否把梯形的面积也分成相等的两部分,如有可能,请求出
的值;如不可能,请说明理由.
(本小题满分10分)如图,已知点A(-1,m)与B(2,)是反比例函数
图象上的两个点.(1)求
的值;(2)若C点坐标为(-1,0),则在反比例函数
图像上是否存在点D,使得以A、B、C、D为顶点的四边形为梯形?若存在,求D点的坐标,若不存在说明理由
(本小题10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,则D点坐标为________ ;
(2)连结AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积. (结果保留π)
(本小题8分)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.
(1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应该售价定为多少元?最大销售利润是多少?
(本小题6分) 如图,MN为半圆O的直径,半径OA⊥MN, D为OA的中点,过点D作BC//MN,
求证:( 1 ) 四边形ABOC为菱形; (2)∠MNB=∠BAC
(本小题6分)
已知一抛物线与x轴的交点是、B(1,0),且经过点C(2,8)。
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标。