游客
题文

某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.
(1)填表(不需要化简)

时间
第一个月
第二个月
清仓时
单价(元)
80

40
销售量(件)
200


(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙ O′交x轴于D点,过点D作DF⊥AE于F.

(1)求OA,OC的长;
(2)求证:DF为⊙ O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

某种产品的年产量不超过1000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).

(1)设产品的费用为y(万元),试写出y与t的函数关系式.
(2)若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额-费用)

已知:如图,⊿ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.

(1)求证:PD是⊙O的切线.
(2)若∠CAB=120°,AB=2,求BC的长.

我们知道:对于任何实数,①∵≥0,∴+1>0;
②∵≥0,∴+>0.
模仿上述方法解答:
求证:(1)对于任何实数,均有:2x2+4x+3>0;
(2)不论为何实数,多项式3x2-5x-1的值总大于2x2-4x-2的值.

已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号