某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)
25 26 21 17 28 26 20 25 26 30
20 21 20 26 30 25 21 19 28 26
(1)请根据以上信息完成下表:
销售额(万元) |
17 |
19 |
20 |
21 |
25 |
26 |
28 |
30 |
频数(人数) |
1 |
1 |
3 |
3 |
|
|
2 |
2 |
(2)上述数据中,众数是 万元,中位数是 万元,平均数是 万元;
(3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.
解下列方程:
(1)5(x+8)=6(2x﹣7)+5;
(2).
如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).
(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.
如图,一条公路的转弯处是一段圆弧AB.
(1)用直尺和圆规作出弧AB所在圆的圆心O;(要求保留作图痕迹,不写作法)
(2)若弧AB的中点C到弦AB的距离为m,AB=80m,求弧AB所在圆的半径.