某开发区为改善居民住房条件,每年都新建一批住房,人均住房面积逐年增加[人均住房面积=(该区住房总面积/该区人口总数)(单位:m2/人)],该开发区2004年至2006年每年年底人均住房面积和人口总数的统计如图1,图2.
请根据图1,图2提供的信息解答下面问题:(1)该区2005年和2006年两年中哪一年比上一年增加的住房面积多?多增加多少平方米?
(2)由于经济发展需要,预计到2008年底该区人口总数比2006年底增加2万人,为使到2008年底该区人均住房面积达到11m2/人,试求2007年和2008年这两年该区住房总面积的年平均增长率为多少
A城有肥料300吨,B城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A城运往甲乡的肥料为x吨.
(1)请你填空完成下表中的每一空:
调入地 化肥量(吨) 调出地 |
甲乡 |
乙乡 |
总计 |
A城 |
x |
_________ |
300 |
B城 |
_________ |
_________ |
200 |
总计 |
260 |
240 |
500 |
(2)设总的运费为y(元),请你求出y与x之间的函数关系式;
(3)怎样调运化肥,可使总运费最少?最少运费是多少?
现场学习:在△ABC中,AB、BC、AC三边的长分别为、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为: _________ ;
(2)若△DEF三边的长分别为、
、
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
如图,直线分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴于点.求点C的坐标并求△ABC的面积.
如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE的延长线上,求证: