(1)阅读理解
先观察和计算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9 2,
4+4 2,2+3 2
。请猜想:当
则
。
如∵展开
∴6+5
。
请你给出猜想的一个相仿的说明过程。
(2)知识应用
①如图⊙O中,⊙O的半径为5,点P为⊙O内一个定点,OP=2,过点P作两条互相垂直的弦,即AC⊥BD, 作ON⊥BD,OM⊥AC,垂足为M、N,求的值。
②在上述基础上,连接AB、BC、CD、DA,利用①中的结论,探求四边形ABCD面积的最大值。
如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.
(1)求BC的长;
(2)求tan∠DAE的值.
某地为改善生态环境,积极开展植树造林,甲、乙两人从近几年的统计数据中有如下发现:
(1)求y2与x之间的函数关系式?
(2)若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该地公益林的面积为多少万亩?
某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?
先化简再求值:,其中a=5,b=2.
求不等式组的正整数解.