已知函数,设函数
(Ⅰ)求证:是奇函数;
(Ⅱ)(1) 求证:;
(1) 结合(1)的结论求的值;
(Ⅲ)仿上,设是
上的奇函数,请你写出一个函数
的解析式,并根据第(Ⅱ)问的结论,猜想函数
满足的一般性结论.
(本小题满分14分)
已知函数(其中
,e是自然对数的底数,e=2.71828…).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若恒成立,求实数a的取值范围;
(Ⅲ)求证:对任意正整数n,都有.
(本小题满分13分)
已知椭圆Ω:的焦距为
,且经过点
.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)A是椭圆Ω与轴正半轴的交点, 椭圆Ω上是否存在两点M、N,使得△AMN是以A为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分12分)
等差数列的前n项和为
,数列
是等比数列,满足
,
,
,
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)令设数列
的前n项和
,求
.
(本小题满分12分)
四棱锥S-ABCD中,侧面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N分别是AB、SC的中点.
(Ⅰ)求证:MN∥平面SAD;
(Ⅱ)求二面角S-CM-D的余弦值.
(本小题满分12分)
在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:
(Ⅰ)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(Ⅱ)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为,求
的分布列和数学期望.