为了求函数,函数,轴围成的曲边三角形的面积,古人想出了两种方案求其近似解(如图):第一次将区间二等分,求出阴影部分矩形面积,记为;第二次将区间三等分,求出阴影部分矩形面积,记为;第三次将区间四等分,求出……依此类推,记方案一中,方案二中,其中1. 求2. 求的通项公式,并证明3. 求的通项公式,类比第②步,猜想的取值范围。并由此推出的值(只需直接写出的范围与的值,无须证明)参考公式:
已知函数定义在上,对任意的,,且. (1)求,并证明:; (2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.
设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项. (1)证明:数列为等差数列;(2)求数列的前项和.
设函数,且有. (1)求证:,且; (2)求证:函数在区间内有两个不同的零点.
设函数(其中),区间. (1)求区间的长度(注:区间的长度定义为); (2)把区间的长度记作数列,令,证明:.
已知函数的部分图象如图所示. (1)求的表达式; (2)设,求函数的最小值及相应的的取值集合.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号