游客
题文

为了求函数,函数轴围成的曲边三角形的面积,古人想出了两种方案求其近似解(如图):第一次将区间二等分,求出阴影部分矩形面积,记为;第二次将区间三等分,求出阴影部分矩形面积,记为;第三次将区间四等分,求出
……依此类推,记方案一中,方案二中,其中
1.      求
2.      求的通项公式,并证明
3.      求的通项公式,类比第②步,猜想的取值范围。并由此推出的值(只需直接写出的范围与的值,无须证明)
参考公式:

科目 数学   题型 解答题   难度 中等
知识点: 微积分的产生──划时代的成就
登录免费查看答案和解析
相关试题

在锐角中,分别为角所对的边,且
(1)试求角的大小;
(2)若,且的面积为,求的值.

已知各项均为正数的数列的前项和为,且对任意的,都有
(1)求数列的通项公式;
(2)若数列满足,且cn=anbn,求数列的前项和
(3)在(2)的条件下,是否存在整数,使得对任意的正整数,都有,若存在,求出的值;若不存在,试说明理由.

已知二次函数,不等式的解集为.
(1)求的解析式;
(2)若函数上单调,求实数的取值范围;
(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.

某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费费用共1.5万元,汽车的维修费
用为:第一年0.4万元,第二年0.6万元,第三年0.8万元,依等差数列逐年递增.
(1)设该车使用n年的总费用(包括购车费用)为试写出的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

△ABC中,分别为角A、B、C所对的边,已知
(1)求的值;
(2)若,求△ABC的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号