游客
题文

北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子。

小明从盒子中任取一张,取到卡片欢欢的概率是多少?
小明从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记
下名字。用列表或画树状图列出小明取到的卡片的所有可能情况,并求出两次都取到卡
片欢欢的概率

科目 数学   题型 解答题   难度 较易
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

温州市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售。
天后每千克该野生菌的市场价格为元,试写出之间的函数关系式;
若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出之间的函数关系式;
李经理将这批野生菌存放多少天后出售可获得最大利润元?
(利润=销售总额-收购成本-各种费用)

一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?
若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为
请你填空:a=,c=,EF=米.
若把它看作是圆的一部分,则可构造图形(如图2)计算如下:
设圆的半径是r米,在Rt△OCB中,易知,r=14.5
同理,当水面上升3米至EF,在Rt△OGF中可计算出GF=米,即水面宽度EF=米.

如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PAx轴于点APBy轴于点B.一次函数的图象分别交轴、轴于点CD,且SPBD=4,

求点D的坐标;
求一次函数与反比例函数的解析式;
根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.

如图,在直角坐标系中,抛物线轴交于点D(0,3).

直接写出的值;
若抛物线与轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;
已知点P是直线BC上一个动点,
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥轴,垂足为E,连结BE.设点P的坐标为(),△PBE的面积为,求的函数关系式,写出自变量的取值范围,并求出的最大值;
②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求的值,并直接写出点P的坐标;如果不存在,请说明理由.

在平面直角坐标系中,把矩形OABC的边OA、OC
分别放在轴和轴的正半轴上,已知OA,OC


直接写出A、B、C三点的坐标
将矩形OABC绕点O逆时针旋转°,得到矩形OA1B1C1
其中点A的对应点为点A1
①当时,设AC交OA1于点K(如图1),
若△OAK为等腰三角形,请直接写出的值;
②当90时(如图2),延长AC交A1C1于点D,
求证:AD⊥A1C1
③当点B1落在轴正半轴上时(如图3),设BC
与OA1交于点P,求过点P的反比例函数的解析式;
并探索:该反比例函数的图象是否经过矩形OABC
的对称中心?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号