对某校小学生进行心理障碍测试得到如下的列联表:
|
有心理障碍 |
没有心理障碍 |
总计 |
女生 |
10 |
|
30 |
男生 |
|
70 |
80 |
总计 |
20 |
|
110 |
将表格填写完整,试说明心理障碍与性别的关系?
附:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3. 841 |
5.024 |
6.635 |
7.879 |
10.828 |
)已知向量=(
,1),
=(
,
),f(x)=
.
(1)若,求
的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足,求函数
的取值范围.
已知函数f(x)=(m,n∈R)在x=1处取到极值2.
(1)求f(x)的解析式;
(2)设函数g(x)=ax-lnx.若对任意的x1∈[,2],总存在唯一的x2∈[
,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,
)、A、B在椭圆E上,且
+
=m
(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心.
如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上的一动点.
(1)求证:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,试求PM∶MA的值;
(3)当M的是PA中点时,求二面角M-EF-N的余弦值.
南昌市教育局组织中学生足球比赛,共有实力相当的8支代表队(含有一中代表队,二中代表队)参加比赛,比赛规则如下:
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军。
现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.