问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。
①这样的长方形可以画 个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?
如图所示,一根旗杆升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC
的长最短,这个最短长度是 .
(本题满分分)已知
和
互为相反数,求x+4y的平方根。
(本题满分分)求下面各式中的
:
(1)
(2)
(本题10分)如图,数轴上的三点A、B、C分别表示有理数a、b、c.(O为原点)
(1)a-b 0,a+c 0,b-c 0.
(用“<”或“>”或“=”号填空)
化简:|a-b|-|a+c|+|b-c|
(2)若数轴上两点A、B对应的数分别为-3、-1,点P为数轴上一动点,其对应的数为x.
①若点P到点A、点B的距离相等,则点P对应的数x为 ;
②若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长
度/秒的速度同时从原点O向左运动.当点A与点B之间的距离为1个单位长度时,求点P所对应的数
x是多少?