如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶M的正上方N处才测飞行距离),请你设计一个求距离MN的方案,要求指出需要测量的数据(用字母表示,并在图中标出)
用你所设计测出的数据写出求距离MN的步骤
先化简,再求值: ,其中 .
计算: .
已知点 是抛物线 , , 为常数, , 与 轴的一个交点.
(Ⅰ)当 , 时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与 轴的另一个交点为 ,与 轴的交点为 ,过点 作直线 平行于 轴, 是直线 上的动点, 是 轴上的动点, .
①当点 落在抛物线上(不与点 重合),且 时,求点 的坐标;
②取 的中点 ,当 为何值时, 的最小值是 ?
将一个直角三角形纸片 放置在平面直角坐标系中,点 ,点 ,点 在第一象限, , ,点 在边 上(点 不与点 , 重合).
(Ⅰ)如图①,当 时,求点 的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点 ,并与 轴的正半轴相交于点 ,且 ,点 的对应点为 ,设 .
①如图②,若折叠后△ 与 重叠部分为四边形, , 分别与边 相交于点 , ,试用含有 的式子表示 的长,并直接写出 的取值范围;
②若折叠后△ 与 重叠部分的面积为 ,当 时,求 的取值范围(直接写出结果即可).
在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 ,图书馆离宿舍 .周末,小亮从宿舍出发,匀速走了 到食堂;在食堂停留 吃早餐后,匀速走了 到图书馆;在图书馆停留 借书后,匀速走了 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离 与离开宿舍的时间 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开宿舍的时间 |
2 |
5 |
20 |
23 |
30 |
离宿舍的距离 |
0.2 |
0.5 |
0.7 |
|
|
(Ⅱ)填空:
①食堂到图书馆的距离为 ;
②小亮从食堂到图书馆的速度为 ;
③小亮从图书馆返回宿舍的速度为 ;
④当小亮离宿舍的距离为 时,他离开宿舍的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.