如图所示,已知圆,定点A(3,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足
,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)求过点Q(2,1)的弦的中点的轨迹方程。
已知曲线的方程为:
(1)若曲线是椭圆,求
的取值范围;
(2)若曲线是双曲线,且有一条渐近线的倾斜角为
,求此双曲线的方程.
设向量,过定点
,以
方向向量的直线与经过点
,以向量
为方向向量的直线相交于点P,其中
(1)求点P的轨迹C的方程;
(2)设过的直线
与C交于两个不同点M、N,求
的取值范围
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标。
在平面直角坐标系中,设点
(1,0),直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ) 记的轨迹的方程为
,过点
作两条互相垂直的曲线
的弦
、
,设
、
的中点分别为
.求证:直线
必过定点
.