如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,求证:以O为圆心,以OC为半径的圆与AB相切.
下列结论正确的序号是 .(少选酌情给分,多选、错均不给分)
①AO="2CO" ;
②AO="BC" ;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB
阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:,
消去y化简得:,
∵△=49-48>0,∴=,
=.
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间。而如果警察冲进了无人的房间,那么小偷就会趁机逃跑。如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.
某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.
(1)求每期减少的百分率是多少?
(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?