一列动车从甲地驶往乙地,一列快车从乙地驶往甲地,两车同时出发,行驶的时间为 x(h),两车之间的距离为y (km) ,图中的折线表示y与x之间的函数关系.根据图象进行以下探究:甲、乙两地之间的距离为 km;
请解释图中点 B的实际意义;
求动车和快车的速度;
求线段BC 所表示的 x与y 之间的函数关系式,并写出自变量 x的取值范围;
若第二列动车也从甲地出发驶往乙地,速度与第一列动车相同.在第一列动车与快车相遇20分钟后,第二列动车与快车相遇.求第二列动车比第一列动车晚出发多少小时?
已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
要用一条长为24cm的铁丝围成一个斜边是10cm的直角三角形,则两条直角边的长分别为。
如图,⊙M的圆心M在x轴上,⊙M分别交x轴于点A、B(A在B的左边),交y轴的正半轴于点C,弦CD∥x轴交⊙M于点D,已知A、B两点的横坐标分别是方程x2=4(x+3)的两个根,
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)点N是直线AD上的一个动点,求△MNB周长的最小值,并在图中画出△MNB周长最小时点N的位置.
已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
如图,为⊙O的直径,
是弦,且
于点E.连接
、
、
。
(1)求证:=
.
(2)若=18cm,
=
,求⊙O的半径.