游客
题文

.
(1)若上存在单调递增区间,求的取值范围;
(2)当时,上的最小值为,求在该区间上的最大值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本题满分10分)选修4-4 :坐标系与参数方程
将圆上各点的纵坐标压缩至原来的,所得曲线记作C;将直线3x-2y-8=0
绕原点逆时针旋转90°所得直线记作l
.(I)求直线l与曲线C的方程;
(II)求C上的点到直线l的最大距离.

(本小题满分10分)选修4-1:几何证明选讲
如图,AB是的直径,AC是弦,直线CE和切于点C, AD丄CE,垂足为D.

(I) 求证:AC平分
(II) 若AB=4AD,求的大小.

(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。

(本小题满分12分)
已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.

(本小题满分12分)
在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求证CQ∥平面PAN;
(II)求证:CQ⊥AP.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号