已知数列{an}各项均为正数,Sn为其前n项和,对于,总有
成等差数列.
(I )求数列{an}的通项an;
(II)设数列的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:
时,
;
(III)对任意,试比较
与
的大小
已知函数,
,
(Ⅰ)若曲线与曲线
相交,且在交点处有相同的切线,求
的值及该切线的方程;
(Ⅱ)设函数,当
存在最小值时,求其最小值
的解析式;
(Ⅲ)对(Ⅱ)中的,证明:当
时,
.
如图,椭圆的顶点为
,焦点为
,
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,
.是否存在上述直线
使
成立?若存在,求出直线
的方程;并说出;若不存在,请说明理由.
已知公差不为零的等差数列的前
项和
,且
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求
的前
项和
.
如图,、
是单位圆上的动点,
是单位圆与
轴的正半轴的交点,且
,记
,
,
的面积为
.
(Ⅰ)若,试求
的最大值以及此时
的值.
(Ⅱ)当点坐标为
时,求
的值.
如图,为圆
的直径,点
、
在圆
上,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求三棱锥的体积.