如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是__ ▲_________
∠BDA′=2∠A
∠BDA′+∠CEA′=2∠A如果折成图②的形状,猜想∠BDA′、∠CEA和∠A的数量关系是__ ▲_________
如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
猜想:▲________将问题1推广,如图,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是_ ▲________
已知:如图①,在中,
,
,
,点
由
出发沿
方向向点
匀速运动,速度为1cm/s;点
由
出发沿
方向向点
匀
速运动,速度为2cm/s;连接.若设运动的时间为
(
),解答下列问题:
(1)当为何值时,
?
(2)设的面积为
(
),求
与
之间的函数关系式;
(3)是否存在某一时刻,使线段
恰好把
的周长和面积同时平分?若存在,求出此时
的值;若不存在,说明理由;
(4)如图②,连接,并把
沿
翻折,得到四边形
,那么是否存在某一时刻
,使四边形
为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
在△ABD中,E、H分别是AB、AD的中点,则EH∥BD,
同理GH∥AC,如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点.
(1)求证:四边形EFGH为正方形;
(2)若AD=4,BC=6,求四边形EFGH的面积.
在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD,
同理GH∥AC,如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点.
(1)求证:四边形EFGH为正方形;
(2)若AD=4,BC=6,求四边形EFGH的面积.
如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连结AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么?
(3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=0.
如图:已知在中,AD平分∠BAC,
为
边的中点,过点
作
,垂足分别为
。
(1)求证:;
(2)若,求证:四边形
是正方形。