要航测某座山的海拔高度,如图,飞机的航线与山顶M在同一个铅垂面内,已知飞机的飞行高度为海拔10000米,速度为900km/h,航测员先测得对山顶的俯角为30°,经过40s(已飞过M点)后又测得对山顶的俯角为45°,求山顶的海拔高度?(精确到m)
(可能要用到的数据)
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=
.
(1)判断函数的奇偶性,并证明;
(2)求的反函数
,并求使得函数
有零点的实数
的取值范围.
(本题满分12分)
已知集合,实数
使得集合
满足
,
求的取值范围.
已知等差数列,
是
的前
项和,且
.
(1)求的通项公式;
(2)设,
是
的前n项和,是否存在正数
,对任意正整数
,不等式
恒成立?若存在,求
的取值范围;若不存在,说明理由.
(3)判断方程是否有解,说明理由;
动圆经过定点
,且与直线
相切。
(1)求圆心的轨迹
方程;
(2)直线过定点
与曲线
交于
、
两点:
①若,求直线
的方程;
②若点始终在以
为直径的圆内,求
的取值范围。
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=
。
(1) 该小组已经测得一组、
的值,tan
=1.24,tan
=1.20,请据此算出H的值;
(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与
之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,
最大?