如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为-1,直线l y=-X-
与坐标轴分别交于A,C两点,点B的坐标为(4,1) ,⊙B与X轴相切于点M.
(1) 求点A的坐标及∠CAO的度数;
(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?
(3)如图2.过A,O,C三点作⊙O1 ,点E是劣弧上一点,连接EC,EA.EO,当点E在劣弧
上运动时(不与A,O两点重合),
的值是否发生变化?如果不变,求其值,如果变化,说明理由.
.
“惠民”经销店为某工厂代销一种工业原料(代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨工业原料共需支付厂家及其它费用100元.
(1)当每吨售价是240元时,计算此时的月销售量;
(2)若在“薄利多销、让利于民”的原则下,当每吨原料售价为多少时,该店的月利润为9000元;
(3)每吨原料售价为多少时,该店的月利润最大,求出最大利润.
如图,点E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若AE=BE,∠BAC=90°,试判断四边形AECF的形状,并说明理由.
某中学开展“中国梦、我的梦”演讲比赛,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.
(1)根据下图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?
已知关于x的方程.
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)当=3时,△ABC的每条边长恰好都是方程
的根,求△ABC的周长.
当a=时,求
的值.