如图, 是
的直径,
,
,连接
.
(1)求证: ;
(2)若直线 为
的切线,
是切点,在直线
上取一点
,使
,
所在的直线与
所在的直线相交于点
,连接
.
①试探究 与
之间的数量关系,并证明你的结论;
② 是否为定值?若是,请求出这个定值;若不是,请说明理由.
如图,矩形 的对角线
,
相交于点
,
关于
的对称图形为
.
(1)求证:四边形 是菱形;
(2)连接 ,若
,
.
①求 的值;
②若点 为线段
上一动点(不与点
重合),连接
,一动点
从点
出发,以
的速度沿线段
匀速运动到点
,再以
的速度沿线段
匀速运动到点
,到达点
后停止运动,当点
沿上述路线运动到点
所需要的时间最短时,求
的长和点
走完全程所需的时间.
已知抛物线 ,直线
,
的对称轴与
交于点
,点
与
的顶点
的距离是4.
(1)求 的解析式;
(2)若 随着
的增大而增大,且
与
都经过
轴上的同一点,求
的解析式.
将直线 向下平移1个单位长度,得到直线
,若反比例函数
的图象与直线
相交于点
,且点
的纵坐标是3.
(1)求 和
的值;
(2)结合图象求不等式 的解集.
甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的 倍,甲队比乙队多筑路20天.
(1)求乙队筑路的总公里数;
(2)若甲、乙两队平均每天筑路公里数之比为 ,求乙队平均每天筑路多少公里.