探究
在图1中,已知线段AB,CD,其中点分别为E,F.
①若A (-1,0), B (3,0),则E点坐标为__________;
②若C (-2,2), D (-2,-1),则F点坐标为__________;归纳
①在图2中,已知线段AB的端点坐标为A(1,1) ,B(3,3),
则AB 的中点C的坐标__________
②无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为
A(a,b),B(c,d), AB中点C的坐标为______ 运用
在图3中,一次函数与反比例函数
的图象交点为A(-1,-3),B(3 , n).
①求出m、n的值;
②求出一次函数的表达式;
③若四边形AOBP为平行四边形,请利用上面的结论求出顶点P的坐标.
在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.
(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;
(2)求出恰好选中男生小明与女生小丽的概率.
如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).
(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?
已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.
(1)求证:点P是线段AC的中点;
(2)求sin∠PMC的值.
某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?