已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( )
A.a100=-1,S100=5 | B.a100=-3,S100=5 |
C.a100=-3,S100=2 | D.a100=-1,S100=2 |
已知数列{an},{bn}满足a1=b1=3,an+1-an==3,n∈N*,若数列{cn}满足cn=ban,则c2 013=( )
A.92 012 | B.272 012 | C.92 013 | D.272 013 |
执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )
A.[-3,4] | B.[-5,2] | C.[-4,3] | D.[-2,5] |
下列推理中属于归纳推理且结论正确的是( )
A.设数列{an}的前n项和为Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推断:Sn=n2 |
B.由f(x)=xcos x满足f(-x)=-f(x)对∀x∈R都成立,推断:f(x)=xcos x为奇函数 |
C.由圆x2+y2=r2的面积S=πr2,推断:椭圆![]() |
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n+1)2>2n |
已知函数y=anx2(an≠0,n∈N*)的图象在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),且当n=1时其图象过点(2,8),则a7的值为( )
A.![]() |
B.7 | C.5 | D.6 |