如图,抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1与x轴交于点D,抛物线与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).求此抛物线的解析式
点E在线段BC上,若△DEB为等腰三角形,求点E的坐标
点F、Q都在该抛物线上,若点C与点F关于直线x=1成轴对称,连结BF、BQ,如果∠FBQ=45°,求点Q的坐标;
将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转后的图形为△BO'C',BO'与BP重合时,则△BO'C'不在BP上的顶点C'的坐标为 ▲ (直接写出答案).
如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,
(1)求证:△BCD≌△ACE;
(2)求DE的长度.
如图,在△ABC中,∠B与∠C的平分线交于点O,过O作一直线交AB、AC于E、F,且BE=EO.设△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,求△OBC的面积.
在如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若C也是图中的格点,且使得△ABC为等腰三角形,在网格中画出所有符合条件的点C.
已知的平方根是
,
的立方根是3,求
的平方根.
已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于P,M.
(1)求证:AB=CD,
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.