设函数
(1)若在点x=0处的切线方程为y=x,求m,n的值。
(2)在(1)条件下,设求a的取值范围.
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
设数列中,若
,则称数列
为“凸数列”。
(1)设数列为“凸数列”,若
,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”中,求证:
;
(3)设,若数列
为“凸数列”,求数列前2010项和
。
(本题满分14分,第(1)小题6分,第(2)小题8分)
设分别为
的内角
的对边,
与
的夹角为
(1)求角的大小;
(2)已知,
的面积
,求
的值。
(本题满分14分,第(1)小题6分,第(2)小题8分)
设函数,若不等式
的解集为
。
(1)求
的值;
(2)若函数在
上的最小值为1,求实数
的值。
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数为
上偶函数,当
时
,又函数
图象关于直线
对称,当方程
在
上有两个不同的实数解时,求实数
的取值范围。
(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于
点
。证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由。