如图,、、…、 是曲线:上的个点,点()在轴的正半轴上,且是正三角形(是坐标原点).(1)写出、、;(2)求出点()的横坐标关于的表达式并证明.
(本题满分10分) 已知四棱锥的底面为直角梯形,//,,底面,且. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值的大小.
(本题满分10分) 求圆心在直线上,且经过圆与圆的交点的圆方程.
(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分14分)已知函数,函数的最小值为, (1)当时,求 (2)是否存在实数同时满足下列条件:①;②当的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由。
函数= (1)若集合中元素只有一个,求出此时的值。 (2)当时,用单调性定义证明函数上单调递增.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号