游客
题文

为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:

求该校平均每班有多少名留守儿童?并将该条形统计图补充完整.
某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了 名学生,两幅统计图中的m= ,n=
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)如图,扇形统计图中,喜欢D类型图书的学生所占的圆心角是多少度?

如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)设直线l与y轴交于点D,抛物线交y轴于点E,则△DBE的面积是多少?

计算已知a=,b=,c=-,d=,e=,请你列式表示上述5个数中“无理数的和”与“有理数的积”的差,并计算结果。

如图,对称轴为x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).

(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且SPOC=4SBOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

已知A=, B=, C=
(1)求证:无论为何值,A-B<0成立,并指出A,B的大小关系
(2)请分析A与C的大小关系

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号