班主任让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有 ▲ 个,白球应有 ▲ 个;
小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.
⑴ |-4|+(-3)2-23-()-1
⑵ 2m·m2+(2m3)2÷m3
⑶ -3(x2-xy)+x(-2y+2x)
⑷ (2a-3b)2-(b+3a)(3a-b)
生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):
如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含
的代数式表示).
如图,已知AD∥CB,AP平分∠DAB,CP平分∠BCD,∠D=40°,
试求:(1)∠PCB的度数;
(2)若∠B=36°,试求∠P的度数.
(3)在图2中,若AD与CB不平行,∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求∠P的度数.
画图并填空:
① 画出图中△ABC的高AD(标注出点D的位置);
② 画出将△ABC沿射线AB方向平移2cm后得到的△A1B1C1;
③ 根据“图形平移”的性质,得:BB1=cm;线段AC与线段A1C1的关系是.
解方程组:(本题共8分,每题4分).
(1)
(2)①②