如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.点M、N在轴上,且是等边三角形.求点B的坐标求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时,与的函数关系式,并求出的最大值.
化简: (1)(-2x2y)2·(-xy)-(-x3)3÷x4·y3; (2)(a2+3)(a-2)-a(a2-2a-2).
解方程组: (1)(2)
如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.
因式分解: (1);(2).
(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高; (2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号