某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加
万吨,记2011年为第一年,甲、乙两工厂第
年的年产量分别为
万吨和
万吨.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.
已知函数.
(Ⅰ)若在
处取得极值,求实数
的值;
(Ⅱ)若恒成立,求实数
的取值范围.
如图,已知椭圆的中心在原点,其上、下顶点分别为
,点
在直线
上,点
到椭圆的左焦点的距离为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于
的任意一点,点
在
轴上的射影为
,
为
的中点,直线
交直线
于点
,
为
的中点,试探究:
在椭圆上运动时,直线
与圆
:
的位置关系,并证明你的结论.
如图,已知三棱锥,
,
分别为
的中点,且
为正三角形.
(Ⅰ)求证:平面
;
(Ⅱ)若,
,求点
到平面
的距离.
2012年伦敦奥运会前夕,在海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行了7轮比赛,得分的情况如茎叶图所示(单位:分).
甲 |
乙 |
|
8 |
7 |
9 |
5 4 5 4 1 |
8 |
4 4 6 7 4 |
1 |
9 |
1 |
(Ⅰ)分别求甲、乙两名运动员比赛成绩的平均分与方差;
(Ⅱ)若从甲运动员的7轮比赛的得分中任选3个不低于80分且不高于90分的得分,求这3个得分与其平均分的差的绝对值都不超过2的概率.
已知公差不为零的等差数列中,
,且
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令(
),求数列
的前
项和
.