已知直线被两直线
和
截得线段的中点为
,求直线
的方程.
在中,角
、
、
所对的边分别为
、
、
.已知
.
(1)求的大小;
(2)如果,
,求
的值.
在数列中,
.从数列
中选出
项并按原顺序组成的新数列记为
,并称
为数列
的
项子列.例如数列
、
、
、
为
的一个
项子列.
(1)试写出数列的一个
项子列,并使其为等差数列;
(2)如果为数列
的一个
项子列,且
为等差数列,证明:
的公差
满足
;
(3)如果为数列
的一个
项子列,且
为等比数列,证明:
.
已知椭圆,直线
与
相交于
、
两点,
与
轴、
轴分别相交于
、
两点,
为坐标原点.
(1)若直线的方程为
,求
外接圆的方程;
(2)判断是否存在直线,使得
、
是线段
的两个三等分点,若存在,求出直线
的方程;若不存在,说明理由.
已知函数,其中
.
(1)当时,求函数
的图象在点
处的切线方程;
(2)如果对于任意、
,且
,都有
,求
的取值范围.
如下图,在四棱柱中,底面
和侧面
都
是矩形,是
的中点,
,
.
(1)求证:
(2)求证:平面
;
(3)若平面与平面
所成的锐二面角的大小为
,求线段
的长度.