游客
题文

请完成下面的说明:
如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-∠A. 说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____. 根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根据角平分线的意义,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____
如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+∠A.
用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?(直接写出结论)
        

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,已知直线、直线,直线分别交x轴于B、C两点,相交于点A.

(1)求A、B、C三点坐标;
(2)求△ABC的面积.

如图,△ABC三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1),先将△ABC作关于x轴的轴对称图形得到△A1B1C1,再将△A1B1C1向左平移5个单位得△A2B2C2

(1)分别画出两次变换的像△A1B1C1与△A2B2C2
(2)求出边AB所在直线的函数解析式,并判断点C2是否在该直线上.

AC,BD相交于点O,AO=OC,再添加一个什么条件,使两个三角形全等?

解不等式组,并在数轴上表示解集.

如图,已知抛物线经过A(﹣3,0),B(1,0)两点,与y轴交于点C,其顶点为D,对称轴是直线l,l与x轴交于点H.

(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号