如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若=
,求平面PBE与平面ABCD所成的锐二面角的大小.
(本小题满分10分)选修4-4 :坐标系与参数方程
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos(
)=1,M,N分别为C与x轴,y轴的交点。
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程。
本小题满分10分)选修4-1:几何证明选讲
已知ABC中,AB="AC," D是
ABC外接圆劣弧AC弧上的点(不与点A,C重合),延长BD至E。
(1)求证:AD的延长线平分CDE;
(2)若BAC=30°,
ABC中BC边上的高为2+
,求
ABC外接圆的面积。
(本题满分12分)
设函数,
(1)若上的最大值
(2)若在区间[1,2]上为减函数,求a的取值范围。
(3)若直线为函数
的图象的一条切线,求a的值。
(本小题满分12分)
设直线与抛物线
交于不同两点A、B,F为抛物线的焦点。
(1)求的重心G的轨迹方程;
(2)如果的外接圆的方程。
如图一,平面四边形关于直线
对称,
。
把沿
折起(如图二),使二面角
的余弦值等于
。对于图二,
(Ⅰ)求;(Ⅱ)证明:
平面
;
(Ⅲ)求直线与平面
所成角的正弦值。