游客
题文

如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点
求反比例函数和一次函数的解析式
求直线AB与x轴的交点C的坐标及△AOB的面积
求不等式的解集(请直接写出答案).

科目 数学   题型 解答题   难度 较易
知识点: 平行线分线段成比例 一次函数的最值
登录免费查看答案和解析
相关试题

(年山东威海12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.

(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;
(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.

(年山东日照14分)如图1,在菱形OABC中,已知OA=,∠AOC=60°,抛物线y=ax2+bx+c(a≠0)经过O,C,B三点.

(1)求出点B、C的坐标并求抛物线的解析式.
(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.
①当OP+PC的最小值时,求出点P的坐标;
②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.

(年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:
(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;
(2)如图2,当DE=8时,求线段EF的长;
(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△ABC相似?若存在,请求出此时线段OE的长;若不存在,请说明理由.

(年湖南益阳12分)图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.

(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

(年湖南衡阳10分)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.

(1)求该二次函数的解析式(系数用含m的代数式表示);
(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;
(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号