已知双曲线与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
若点D坐标是(-8,0),求A、B两点坐标及k的值
若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将 , 两种农产品定期运往益阳某加工厂,每次运输 , 产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元. , 两种产品原来的运费和现在的运费(单位:元 件)如下表所示:
品种 |
|
|
原运费 |
45 |
25 |
现运费 |
30 |
20 |
(1)求每次运输的农产品中 , 产品各有多少件?
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中 产品的件数不得超过 产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?
如图,在平面直角坐标系中有三点 , , ,其中有两点同时在反比例函数 的图象上,将这两点分别记为 , ,另一点记为 .
(1)求出 的值;
(2)求直线 对应的一次函数的表达式;
(3)设点 关于直线 的对称点为 , 是 轴上的一个动点,直接写出 的最小值(不必说明理由).
2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为 , , , 四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的 等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到 等的学生有多少人?
如图, , .求证: .
如图1,经过原点 的抛物线 、 为常数, 与 轴相交于另一点 .直线 在第一象限内和此抛物线相交于点 ,与抛物线的对称轴相交于点 .
(1)求抛物线的解析式;
(2)在 轴上找一点 ,使以点 、 、 为顶点的三角形与以点 、 、 为顶点的三角形相似,求满足条件的点 的坐标;
(3)直线 沿着 轴向右平移得到直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 .把 沿直线 折叠,当点 恰好落在抛物线上时(图 ,求直线 的解析式;
(4)在(3)问的条件下(图 ,直线 与 轴相交于点 ,把 绕点 顺时针旋转 得到△ ,点 为直线 上的动点.当△ 为等腰三角形时,求满足条件的点 的坐标.