如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有_ 个.
如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有_ 个.
如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有_ 个.
如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有_ 个.
拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合,平面内可以作为旋转中心的点有多少个?(直接写结论)
|
|
|
|
如图8,△ABC中,AB=AC,若点D在AB上,点E在AC上,请你加上一个条件,使结论BE=CD成立,同时补全图形,并证明此结论
如图,对称轴为的抛物线
与
轴相交于点
、
求抛物线的解析式,并求出顶点
的坐标
连结AB,把AB所在的直线平移,使它经过原点O,得到直线
.点P是
上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为
,当0<S≤18时,求
的取值范围
在(2)的条件下,当
取最大值时,抛物线上是否存在点
,使△OP
为直角三角形且OP为直角边.若存在,直接写出点
的坐标;若不存在,说明理由.
设绝对值小于1的全体实数的集合为S,在S中定义一种运算“”,
使得证明:结合律
成立
证明:如果a与b在S中,那么
也在S中(说明:可能用到的知识:
即
)
解方程:
(注:表示实数
的整数部分,
表示
的小数部分,如
)
已知为正整数,二次方程
的两根为
,求下式的值: