一个口袋中装有大小相同的个红球(
且
)和
个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。
(Ⅰ)试用表示一次摸奖中奖的概率
;
(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求
的最大值.
(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的
个红球全部作如下标记:记上
号的有
个(
),其余的红球记上
号,现从袋中任取一球。
表示所取球的标号,求
的分布列、期望和方差.
中内角
的对边分别为
,向量
,且
(1)求锐角的大小,
(2)如果,求
的面积
的最大值
设函数f(x)="|x-1|" +|x-a|,.
(I)当a =4时,求不等式的解集;
(II)若对
恒成立,求a的取值范围.
以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线I的参数方程为(t为参数,O < a <
),曲线C的极坐标方程为
(I)求曲线C的直角坐标方程;
(II)设直线l与曲线C相交于A ,B两点,当a变化时,求的最小值.
如图所示,PA为0的切线,A为切点,PBC是过点O的割线,PA ="10,PB" =5、
(I)求证:;
(2)求AC的值.
已知函数在点(1,f(1))处的切线方程为y = 2.
(I)求f(x)的解析式;
(II)设函数若对任意的
,总存唯一实数
,使得
,求实数a的取值范围.