如图,将一把直角三角板的直角顶点放置于原点O,两直角边与抛物线交于M、N两点,设M、N的横坐标分别为m、n(m﹥0,n﹤0);请解答下列问题:
当m=1时,n=__ ▲ ; 当m=2时,n=__ ▲ 试猜想m与n满足的关系,并证明你猜想的结论。
连接M、N,若△OMN的面积为S,求S关于m的函数关系式。
当三角板绕点O旋转到某一位置时,恰好使得∠MNO=30°,此时过M作MA⊥x轴,垂足为A,求出△OMA的面积
当m=2时,抛物线上是否存在一点P使M、N、O、P四点构成梯形,若存在,直接写出所有满足条件的点P的坐标;若不存在,说明理由。
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E。
证明:DE=BD+CE。
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由。
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并给出证明。
实验中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。
(1)购买一个足球、一个篮球各需多少元?
(2)根据实验中学的实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不低于5600但不超过5720元,可以有哪几种购买方案?
如图,等边三角形ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,则M是BE的中点,请说明理由。
如图, 已知:AC⊥BC于点C, AD⊥BD于点D,点E是AB中点,若CD=7, AB=12,求△CDE的周长。
如图,已知:=60°,
=30°,
=20°,求
的度数。