红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图.
请根据图中提供的信息,完成下列问题:
这四个班共种__▲______棵树.
请你补全两幅统计图.
若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?
(本题6分)如图,在△ABC中,∠BAC是钝角,请画出AB边上的高CD,BC边上的中线AE,并将△ABC沿AE方向平移AE的长度.(请保留作图痕迹,)
化简求值:已知,求代数式
的值.
(1)
(2)
(3)
(4)
如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.
(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.
已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.
(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求-的值;
(Ⅱ)当y0≥0恒成立时,求的最小值.