如图所示,轻绳一端系一质量为m的小球,另一端做成一个绳圈套在图钉A和B上,此时小球在光滑的水平平台上做半径为a、角速度为ω的匀速圆周运动。现拔掉图钉A让小球飞出,此后绳圈又被A正上方距A高为h的图钉B套住,达稳定后,小球又在平台上做匀速圆周运动。求:
(1)图钉A拔掉前,轻绳对小球的拉力大小;
(2)从拔掉图钉A到绳圈被图钉B套住前小球做什么运动?所用的时间为多少?
(3)小球最后做匀速圆周运动的角速度。
如图所示,水平光滑轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m。质量m=0.10kg的小滑块(可视为质点)在水平恒力F作用下,从A点由静止开始运动,经B点时撤去力F,小滑块进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。重力加速度g取10m/s2。
(1)若小滑块从C点水平飞出后又恰好落在A点。滑块落回A点时的速度;
(2)如果要使小滑块在圆弧轨道运动过程中不脱离轨道,求水平恒力F应满足的条件。
我国“嫦娥一号”月球探测器在绕月球成功运行之后,为进一步探测月球的详细情况,又发射了一颗绕月球表面飞行的科学试验卫星,假设该卫星绕月球的运动视为圆周运动,并已知月球半径为R,月球表面重力加速度为g,万有引力常量为G,不考虑月球自转的影响.
(1)求该卫星环绕月球运行的第一宇宙速度v1;
(2)若该卫星在没有到达月球表面之前先要在距月球某一高度绕月球做圆周运动进行调姿,且该卫星此时运行周期为T,求该卫星此时的运行半径r;
(3)由题目所给条件,请提出一种估算月球平均密度的方法,并推导出密度表达式.
如图所示,一倾角为θ=37°的光滑斜面固定在地面上,斜面长度s0=3.0m,斜面底端有一垂直于斜面的固定挡板。在斜面顶端由静止释放一质量m=0.10kg的小物块。当小物块与挡板第一次碰撞后,能沿斜面上滑的最大距离s=0.75m。已知小物块第一次与挡板碰撞过程中从接触到离开所用时间为0.10s,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。求:
(1)小物块第一次与挡板碰撞前的速度大小;
(2)小物块第一次与挡板撞击过程中损失的机械能;
(3)小物块第一次与挡板撞击过程中受到挡板的平均作用力。
如图所示,用一个平行于斜面向上的恒力将质量m=10.0kg的箱子从斜坡底端由静止推上斜坡,斜坡与水平面的夹角θ=37°,推力的大小F=100N,斜坡长度s=4.8m,木箱底面与斜坡的动摩擦因数μ=0.20。重力加速度g取10m/s2,且已知sin37°=0.60,cos37°=0.80。
求:(1)物体到斜面顶端所用时间;
(2)到顶端时推力的瞬时功率多大。
如图所示,质量为0.78kg的金属块放在水平桌面上,在与水平方向成37°角斜向上、大小为3.0N的拉力F作用下,以4.0m/s的速度向右做匀速直线运动。已知sin37°=0.60,cos37°=0.80,g取10m/s2。
求:(1)金属块与桌面间的动摩擦因数;
(2)如果从某时刻起撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远?