游客
题文

甲船从A港出发顺流匀速驶向B港,乙船同时从B港出发逆流匀速驶向A港.甲船行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h.甲、乙两船离A港的距离y1y2(km)与行驶时间x(h)之间的函数图象如图所示.
  
 

(1)甲船在顺流中行驶的速度为            km/h,m          
(2)①当0≤x≤4时,求y2x之间的函数关系式;     
② 甲船到达B港时,乙船离A港的距离为多少?
(3)救生圈在水中共漂流了多长时间?

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,△ABC中,AB=AC=5,BC=8.

(1)求△ABC的面积;
(2)若过点C作AB平行线CD,并使CD=BC,连结BD,交AC于点E.
①那么∠ACB与∠D有怎样的数量关系?证明你的结论;
②那么△ABE与△BCE的面积比是多少?写出求解过程.

如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.

(1)试说明:∠AEQ=90°;
(2)猜想EF与图中哪条线段相等(不能添加辅助线产生新的线段),并说明理由.

如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.

求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.

(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.

观察下列各式:
3×5=15=42﹣1
5×7=35=62﹣1
11×13=143=122﹣1

根据你的观察、归纳、猜想,请将你发现的规律,用只含一个字母n的式子表示出来,并予以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号