一个不透明的袋子中装有4个质地、大小均相同的小球,这些小球上分别标有数字3、4、5、x.甲、乙两人每次从袋中各随机摸出1球,并计算摸出这2个小球上数字之和,记录后都将放回袋中搅匀,进行重复实验.实验数据如下表:
摸球总次数 |
10 |
20 |
30 |
60 |
90 |
120 |
180 |
240 |
330 |
450 |
“和为8”出现频数 |
2 |
10 |
13 |
24 |
30 |
37 |
58 |
82 |
110 |
150 |
“和为8”出现频率 |
0.20 |
0.50 |
0.43 |
0.40 |
0.33 |
0.31 |
0.32 |
0.34 |
0.33 |
0.33 |
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”频率将稳定在它概率附近.估计
出现“和为8”概率是________.
0.33
(2)如果摸出的这两个小球上数字之和为9概率是,那么x值可以取7吗?请用列表法或画树状图法说明理由;如果x值不可以取7,请写出一个符合要求x值.
已知关于的方程
.
(1)若该方程有两个不相等的实数根,求实数的取值范围;
(2)若该方程的一个根为1,求的值及该方程的另一根.
已知,求代数式
的值.
在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)
(1)这次调查获取的样本数据的众数是;
(2)这次调查获取的样本数据的中位数是;
(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.
如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.
(1)填空:AD=(cm),DC=(cm);
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=
)
⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,PB.
(1)如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;
(2)如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;
(3)如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.