两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=2.
固定△ABC不动,将△DEF进行如下操作:如图(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,它的面积是否变化,如果不变请求出 其面积.如果变化,说明理由.
如图(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由
如图(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,
使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出的值.
计算: .
已知抛物线 .
(1)通过配方可以将其化成顶点式为 ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 轴 (填上方或下方),即 0(填大于或小于)时,该抛物线与 轴必有两个交点;
(2)若抛物线上存在两点 , , , ,分布在 轴的两侧,则抛物线顶点必在 轴下方,请你结合 、 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
(3)根据二次函数(1)(2)结论,求证:当 , 时, .
已知 是 的任意一条直径.
(1)用图1,求证: 是以直径 所在直线为对称轴的轴对称图形;
(2)已知 的面积为 ,直线 与 相切于点 ,过点 作 ,垂足为 ,如图2.
求证:① ;
②改变图2中切点 的位置,使得线段 时, .
为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买 品牌足球共花费2880元, 品牌足球共花费2400元,且购买 品牌足球数量是 品牌数量的1.5倍,每个足球的售价, 品牌比 品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买 、 两种足球共50个,已知该店对每个足球的售价,今年进行了调整, 品牌比去年提高了 , 品牌比去年降低了 ,如果今年购买 、 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个 品牌足球?
下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.
探究3
电话计费问题
下表中有两种移动电话计费方式.
月使用费 元 |
主叫限定时间 |
主叫超时费 (元 |
被叫 |
|
方式一 |
58 |
150 |
0.25 |
免费 |
方式二 |
88 |
350 |
0.19 |
免费 |
考虑下列问题:
月使用费固定收: 主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费. |
(1)设一个月内用移动电话主叫为 是正整数).根据上表,列表说明:当 在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 和自变量的函数 ,请你帮小明写出:
表示问题中的 , 表示问题中的 .
并写出计费方式一和二分别对应的函数解析式;
(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 坐标轴单位长度可根据需要自己确定)