游客
题文

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=2.
固定△ABC不动,将△DEF进行如下操作:
如图(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,它的面积是否变化,如果不变请求出   其面积.如果变化,说明理由.
如图(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由
如图(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,
使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出的值.
  

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

计算: ( 1 2 ) 1 + ( π 3 ) 0 2 cos 30 ° + | 3 12 |

已知抛物线 y = a x 2 + kx + h ( a > 0 )

(1)通过配方可以将其化成顶点式为   ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 x   (填上方或下方),即 4 ah k 2   0(填大于或小于)时,该抛物线与 x 轴必有两个交点;

(2)若抛物线上存在两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,分布在 x 轴的两侧,则抛物线顶点必在 x 轴下方,请你结合 A B 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 x 1 < x 2 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)

(3)根据二次函数(1)(2)结论,求证:当 a > 0 ( a + c ) ( a + b + c ) < 0 时, ( b c ) 2 > 4 a ( a + b + c )

已知 AB O 的任意一条直径.

(1)用图1,求证: O 是以直径 AB 所在直线为对称轴的轴对称图形;

(2)已知 O 的面积为 4 π ,直线 CD O 相切于点 C ,过点 B BD CD ,垂足为 D ,如图2.

求证:① 1 2 B C 2 = 2 BD

②改变图2中切点 C 的位置,使得线段 OD BC 时, OD = 2 2

为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买 A 品牌足球共花费2880元, B 品牌足球共花费2400元,且购买 A 品牌足球数量是 B 品牌数量的1.5倍,每个足球的售价, A 品牌比 B 品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买 A B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整, A 品牌比去年提高了 5 % B 品牌比去年降低了 10 % ,如果今年购买 A B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个 B 品牌足球?

下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.

探究3

电话计费问题

下表中有两种移动电话计费方式.

月使用费 /

主叫限定时间 / min

主叫超时费 / (元 / min )

被叫

方式一

58

150

0.25

免费

方式二

88

350

0.19

免费

考虑下列问题:

月使用费固定收:

主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.

(1)设一个月内用移动电话主叫为 tmin ( t 是正整数).根据上表,列表说明:当 t 在不同时间范围内取值时,按方式一和方式二如何计费.

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.

(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 x 和自变量的函数 y ,请你帮小明写出:

x 表示问题中的    y 表示问题中的   

并写出计费方式一和二分别对应的函数解析式;

(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 : 坐标轴单位长度可根据需要自己确定)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号