已知等比数列
的公比为
.
(1)若
=,求数列
的前
项和;
(Ⅱ)证明:对任意
,
,
,
成等差数列.
在三棱锥中,△ABC是边长为4的正三角形,平面
,
,M、N分别为AB、SB的中点。
(1)证明:;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离。
关于实数的不等式
的解集依次为
与
,求使
的
的取值范围。
设为等差数列,
为数列
的前
项和,已知
,
为数列
的前
项和,求
已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ) 当时,求函数
的最大值,最小值.
.(本小题满分12分)
已知点,一动圆过点
且与圆
内切,
(1)求动圆圆心的轨迹的方程;
(2)设点,点
为曲线
上任一点,求点
到点
距离的最大值
;
(3)在的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
满足
,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.