从5名男生和4名女生选出4人去参加辩论比赛.
(1)求选出的4人中有1名女生的概率;
(2)设X为选出的4人中的女生人数,求X的分布列及数学期望.
(本小题满分14分)
已知函数其中
为参数,且
(I)当时,判断函数
是否有极值;
(II)要使函数的极小值大于零,求参数
的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数
在区间
内都是增函数,求实数
的取值范围。
(本小题满分14分)
已知数列满足
(I)证明:数列是等比数列;
(II)求数列的通项公式;
(III)若数列满足
证明
是等差数列
(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求点E到平面ACD的距离 .
(本小题满分14分)
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.
(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P=;
写出图二表示的种植成本与时间的函数关系式Q=;
(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
(注:市场售价和种植成本的单位:元/kg,时间单位:天)