游客
题文

我市某工艺厂为迎“五一”,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:

销售单价(元/件)
……
30
40
50
60
……
每天销售量(件)
……
500
400
300
200
……

(1)    把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,已知 AB / / CD AB = CD BE = CF

求证:(1) ΔABF ΔDCE

(2) AF / / DE

解方程:

(1) x 2 +x-1=0

(2) - 2 x 0 4 x + 1 < 5

计算:

(1) ( - 2 ) 2 + | - 5 | - 16

(2) a - 1 a - b - 1 + b b - a

如图,二次函数 y 1 = a ( x - m ) 2 + n y 2 = 6 a x 2 + n ( a < 0 m > 0 n > 0 ) 的图象分别为 C 1 C 2 C 1 y 轴于点 P ,点 A C 1 上,且位于 y 轴右侧,直线 PA C 2 y 轴左侧的交点为 B

(1)若 P 点的坐标为 ( 0 , 2 ) C 1 的顶点坐标为 ( 2 , 4 ) ,求 a 的值;

(2)设直线 PA y 轴所夹的角为 α

①当 α = 45 ° ,且 A C 1 的顶点时,求 am 的值;

②若 α = 90 ° ,试说明:当 a m n 各自取不同的值时, PA PB 的值不变;

(3)若 PA = 2 PB ,试判断点 A 是否为 C 1 的顶点?请说明理由.

如图,正方形 ABCD 的边长为6, M AB 的中点, ΔMBE 为等边三角形,过点 E ME 的垂线分别与边 AD BC 相交于点 F G ,点 P Q 分别在线段 EF BC 上运动,且满足 PMQ = 60 ° ,连接 PQ

(1)求证: ΔMEP ΔMBQ

(2)当点 Q 在线段 GC 上时,试判断 PF + GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设 QMB = α ,点 B 关于 QM 的对称点为 B ' ,若点 B ' 落在 ΔMPQ 的内部,试写出 α 的范围,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号