2012年南京市初中毕业生升学体育考试要求男生从立定跳远、投掷实心球等6个项目中任选三项.某校九年级共有100名男生选择了立定跳远,现从这100名男生中随机抽取10名男生进行测试,下面是他们测试结果的条形统计图.(另附:九年级男生立定跳远的计分标准)
九年级男生立定跳远计分标准
成绩(cm) |
230 |
190 |
172 |
164 |
… |
分值 |
13 |
12 |
11 |
10 |
… |
求这10名男生在本次测试中,立定跳远距离的极差和中位数,立定跳远得分的众数和平均数.
请你估计该校选择立定跳远的100名男生中立定跳远得12分的人数.
已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
用配方法解下列方程:
(1)x2﹣4x+2=0;
(2)x2+3x+2=0.
已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是()
A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对