如图,某小区准备绿化一块直径为的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用,
表示
和
.
(2)当为定值,
变化时,求“规划合理度”取得最小值时的角
的大小.
成都市海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 |
A |
B |
C |
数量 |
50 |
150 |
100 |
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
本小题满分12分)已知函数,
三个内角
的对边分别为
.
(Ⅰ)求的单调递增区间及对称轴的方程;
(Ⅱ)若,
,求角
的大小.
设函数.
(1)若函数在
处有极值,求函数
的最大值;
(2)是否存在实数,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;
(3)记,证明:不等式
.
(本小题满分13分)已知椭圆C:的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若直线L:与椭圆C相交于A、B两点,且
,求证:
的面积为定值
已知数列满足:
,
.数列
的前
项和为
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,
.求数列
的前
项和
.