在平面直角坐标系中,抛物线
经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.
求该抛物线的解析式;
若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.
作图题:(不写作法,但必须保留作图痕迹)
如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案。
如图,已知AB=AC,D、E分别为AB、AC上两点,∠B=∠C,求证:BD=CE。
如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC
计算:
如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去。
(1)填表:
剪的次数 (剪两刀记一次) |
1 |
2 |
3 |
4 |
5 |
6 |
正方形个数 |
4 |
7 |
(2)如果剪n次,共剪出多少个正方形?
(3)如果剪了100次,共剪出多少个正方形?